
Metarhia Protocol Documentation
Release

Metarhia

Jan 29, 2019

Contents:

1 Protocol Specification 3
1.1 Introduction . 3
1.2 Terms . 3
1.3 Transport Support . 4
1.4 Connection States . 5
1.5 Chunk Types . 6
1.6 Chunk Formats . 6
1.7 “Fast” UDP Events Encryption (ignore this for now) . 9

i

ii

Metarhia Protocol Documentation, Release

Metarhia Protocol (mhp) is a protocol for RPC, event streams and two-way asynchronous
data transfer that supports multiplexing and is capable of handling network errors gracefully.

Contents: 1

https://npmjs.com/package/mhp

Metarhia Protocol Documentation, Release

2 Contents:

CHAPTER 1

Protocol Specification

1.1 Introduction

Metarhia Protocol is an RPC, session and binary data transfer protocol that provides two-way asynchronous data
transfer, multiplexing applications, channels, event and binary streams over one socket, and graceful handling of
short-time connection losses due to network errors with full and transparent session restoration. It also provides
authentication mechanisms, offers data compression and supports multiple serialization formats with each of those
being more appropriate or efficient for different kinds of data.

1.2 Terms

Important: The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,
“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as de-
scribed in RFC 2119.

Transport refers to a network protocol or another communication mechanism that provides full-duplex communi-
cation channel with ordered and reliable data flow, to which Metarhia Protocol delegates transmission of raw data
streams.

Transport connection refers to an underlying transport socket, connection or other transport-specific communication
channel, over which a Metarhia Protocol connection transmits data.

Metarhia Protocol connection (or just connection without additional adjectives) refers to an abstraction over an
instance of transport connection managed by a Metarhia Protocol implementation, that hides implementation details
of the transport and provides the functionality of Metarhia Protocol to user applications. Metarhia Protocol connections
have one-to-one correspondence to their primary transport connections used for RPC, but may open additional ones
internally for specific purposes.

Chunk refers to a data unit of Metarhia Protocol consisting of headers and optional payload. All data transmitted via
Metarhia Protocol are split into chunks.

3

https://tools.ietf.org/html/rfc2119

Metarhia Protocol Documentation, Release

Channel refers to a set of chunks transmitted over the same connection, identified among other ones using a number
that is unique throughout the currently active channels connection-wise. Channels provide multiplexing capabilities
for connections.

Message refers to a channel that is characterized by a short lifetime and small number of chunks (only one chunk
in most cases, with the maximal amount specified in section ???) that are buffered in memory until the message is
received, and then processed as a single unit by the protocol.

Stream refers to a channel that is characterized by arbitrarily long lifetime (up to existing as long as the connection
exists) and indefinite number of chunks, which may be processed by an application one by one immediately after they
become available.

Session is a persistent association between applications on both sides of a connection. Sessions may be anonymous
and authenticated. Channels are bound to corresponding sessions.

Tunnel refers to the set of sessions and channels that belong to a connection. On network failure, the tunnel can be
restored transparently for an application.

RPC is an acronym for remote procedure calls.

AEAD is an acronym for Authenticated Encryption with Associated Data.

1.3 Transport Support

Metarhia Protocol implementations primarily targeted to be used in server-side environments MUST support TCP,
TLS, WebSocket and WebSocket tunneled over TLS protocols as transports. Metarhia Protocol implementations pri-
marily targeted to be used in server-side environments MAY support additional transports, for example, Unix domain
sockets.

Metarhia Protocol implementations designed specifically to be used in client-side environments SHOULD support
TCP and TLS transports. In those cases where it is not possible (for example, in implementations for Web browsers),
such implementations MUST support WebSocket and WebSocket tunneled over TLS as transports, and MAY support
them otherwise. In other words, at least one of “TCP and TLS” or “WebSocket and WebSocket over TLS” pairs of
transports MUST be supported, with preference towards TCP and TLS. Client-side implementations MAY support
other transports, if their implementors find it reasonable.

4 Chapter 1. Protocol Specification

https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc6455

Metarhia Protocol Documentation, Release

1.4 Connection States

AWAITING_HANDSHAKE

AWAITING_TUNNEL

NORMAL

NETWORK_CONN_LOST

Protocol Handshake

Open Tunnel, New Tunnel, State Synchronization

Channel Preamble, Data Chunk, Ping, Pong

Network Error

Reconnect

1.4.1 AWAITING_HANDSHAKE

A transport connection has opened, but handshake hasn’t been performed and there is no session established.

A client sends a Protocol Handshake chunk. When the handshake is performed successfully, the connection transitions
into AWAITING_TUNNEL state.

A server waits a Protocol Handshake chunk from the client. When the handshake is performed successfully, the
connection transitions into AWAITING_TUNNEL state.

1.4.2 AWAITING_TUNNEL

The client sends an Open Tunnel chunk. The server responds either with a New Tunnel chunk, or, in the case when
an existing session is being restored, with a State Synchronization chunk, to which the client responds with a State
Synchronization chunk too, and both sides re-send all the chunks they did not receive. After that, both connections
transition into NORMAL state.

1.4.3 NORMAL

This is the main mode of operation. All the communication is performed using channels and ping/pong chunks. On
network error, the connection transitions into NETWORK_CONN_LOST state.

1.4.4 NETWORK_CONN_LOST

The client buffers all outgoing chunks and tries to reconnect to the server. On success, the connection transitions into
AWAITING_HANDSHAKE state.

1.4. Connection States 5

Metarhia Protocol Documentation, Release

The server buffers all outgoing chunks and awaits a new connection from the client.

1.5 Chunk Types

Each chunk transmitted in NORMAL connection state starts with a 1-octet field indicating the chunk type. This value
MUST be equal to one of the following:

Name Value
PING 0
PONG 1
MESSAGE_PREAMBLE 2
STREAM_PREAMBLE 3
DATA_CHUNK 4

1.6 Chunk Formats

Note: Metarhia Protocol uses little-endian byte order.

1.6.1 Protocol Handshake

Field Bits
Version 16
Encryption 16
Payload

Version field indicates the version of the protocol to use. This document describes Metarhia Protocol version 1.

Currently, the only possible value of Encryption is 0 and the payload is empty.

When new possible values of Encryption are added, they may require adding new handshake chunks to implement,
e.g., key exchange. When Encryption is 0, no additional data is required for the protocol handshake, and Metarhia
Protocol sessions may be opened or restored over the connection immediately.

1.6.2 Open Tunnel

Field Bits
Token 256

Token is a 32-byte tunnel ID and tunnel secret key. 0 is a special value reserved to indicate that a new tunnel must
be created, instead of restoring an existing one.

6 Chapter 1. Protocol Specification

Metarhia Protocol Documentation, Release

1.6.3 New Tunnel

Field Bits
Token 256

Token is a 32-byte random string, obtained from a cryptographically secure source. It serves both as a tunnel ID and
a tunnel secret key. Token must not be equal to 0.

1.6.4 State Synchronization

Field Bits
LastPingId 32
ChunksCount 32

LastPingId is an ID of the last ping chunk that a sending side has received, and ChunksCount is the number of
chunks the side has received since then.

1.6.5 Ping

Field Bits
ChunkType 8
PingId 32

ChunkType of Ping chunks is PING (see Chunk Types).

1.6.6 Pong

Field Bits
ChunkType 8
PingId 32

ChunkType of Pong chunks is PONG (see Chunk Types).

1.6.7 Channel Preamble

This is an abstract channel preamble, that is, in practice, represented by Message Preamble and Stream Preamble. Id
and Compression are generic channel preamble fields, pertaining to both of them. Stream Preamble doesn’t have
any additional fields, so this structure effectively describes it. Message Preamble, however, has additional fields that
occupy the place of MessagePreambleReserved in the following table.

ChunkType of Message Preamble equals to MESSAGE_PREAMBLE, and ChunkType of Stream Preamble equals
to STREAM_PREAMBLE (see Chunk Types).

1.6. Chunk Formats 7

Metarhia Protocol Documentation, Release

Field Bits
ChunkType 8
Id 32
Compression 8
MessagePreambleReserved 16
SessionId 64

Id field is an identifier of the channel in the connection. To avoid collisions because of unsynchronized channel
counters on the sides of a connection, the most significant bit of the Id field is masked to be always equal to 0
for channels initiated by clients and 1 for channels initiated by servers by making the field an signed integer, two’s
complement. In other words, the valid values of the Id field of client-initiated channels are [0, 231 − 1] and the valid
values of the Id field of server-initiated channels are [−231,−1]. The Id value MUST be unique throughout the
currently active channels.

The Compression field indicates if the payload of subsequent data chunks in this channel is compressed. The field
MUST be set to one of the following values:

Compression
0 No compression
1 Gzip compression

SessionId is an identifier of the session to open a channel in. It is obtained during application handshake as a part
of HandshakeResponse.

If ChunkType is MESSAGE_PREAMBLE, then the chunk is a Message Preamble.

1.6.8 Message Preamble

See Channel Preamble.

Field Bits
ChunkType 8
Id 32
Compression 8
Encoding 8
MessageType 8
SessionId 64

This chunk type extends the generic Channel Preamble, adding two new fields instead of the
MessagePreambleReserved field, namely, Encoding and MessageType.

The Encoding field specifies the format used to encode the payload fields of messages that require passing arbitrary
data (e.g., arguments of RPC methods in Call messages). It MUST be set to one of the following values:

Encoding
0 JSTP
1 JSON

The MessageType field MUST be set to one of the following values:

8 Chapter 1. Protocol Specification

Metarhia Protocol Documentation, Release

MessageType
0 HandshakeRequest
1 HandshakeResponse
2 Event
3 Call
4 Callback
5 Inspect
6 InspectCallback

1.6.9 Data Chunk

Field Bits
ChunkType 8
ChannelId 32
Length 16
Flags 8
Payload

ChunkType of a data chunk is DATA_CHUNK (see Chunk Types).

The ChannelId field specifies a channel the chunk belongs to. The Length field contains the size of the payload
in bytes. The Flags field has the following structure:

Flags
Bits 7–1 Reserved
Bit 0 More

Flag More specifies if the channel has more chunks. Reserved flags MUST be set to 0.

1.7 “Fast” UDP Events Encryption (ignore this for now)

Note: I drafted this section while I was in context so as to not forget about all I thought about this; the things this
would be needed for aren’t quite there yet ;)

1.7.1 AEAD Algorithm Requirements and Motivation

For chunks that use symmetric encryption (for example, “fast” UDP events), AEAD based on the ChaCha20 stream
cipher and Poly1305 message authentication code algorithm with modifications from IETF (RFC 7539) MUST be
used.

ChaCha20 and Poly1305 are modern, secure, high-speed algorithms developed by Daniel J. Berstein, that have un-
dergone scrupulous analysis in multiple scientific papers and are under constantly growing adoption now. As some
examples:

• Google has used their implementation of these algorithms for TLS traffic between Google Chrome on Android
and Google’s servers since 2014.

• TLS 1.3 draft has TLS_CHACHA20_POLY1305_SHA256 cipher suite, and recommends implementing it.

1.7. “Fast” UDP Events Encryption (ignore this for now) 9

https://cr.yp.to/chacha.html
https://cr.yp.to/mac.html
https://tools.ietf.org/html/rfc7539
https://tools.ietf.org/html/draft-ietf-tls-tls13-21

Metarhia Protocol Documentation, Release

IETF versions of ChaCha20, ChaCha20-Poly1305 and ChaCha20-Poly1305 AEAD specified in RFC 7539 modify
Berstein’s algorithm by changing 64-bit nonce to 96-bit nonce, so 64-bit block counter is reduced 32-bit block counter,
effectively limiting the size of a message to 256 GB (instead of 264 bytes).

Poly1305 is proved to be secure using the same key for at least 264 messages, provided that nonces are never reused.

1.7.2 Symmetric Encryption Implementation

Upon creation of a Tunnel structure instance, the following fields relevant to the symmetric encryption facilities
(with one of them not being limited to this scope only) are initialized:

• secret — a 32-byte unsigned integer value

• nonce — a 12-byte unsigned integer value

nonce value MUST be initialized with random data from a cryptographically secure source.

If the Tunnel structure is created on the side of a client, the least significant bit of nonce MUST be set to 0. If the
Tunnel structure is created on the side of a server, the least significant bit of nonce MUST be set to 1.

If the Tunnel structure is created on the side of a server, secret value MUST be initialized with random data from
a cryptographically secure source.

The server shares this value with the client during the handshake, as described in section ???. When the client receives
this value, it MUST initialize the secret field of its Tunnel structure with the received value.

Danger: This procedure MAY be conducted over a connection that is not secured using TLS or other method of
asymmetric encryption and server authentication in a local or trusted environment, or on a single machine during
testing, but one SHOULD NOT do so over a publicly accessible network. Security may be compromised in such
case. Only connections secured with TLS (or an alternative method) SHOULD be used with Metarhia Protocol in
public networks.

When symmetric encryption of a chunk is requested, Metarhia Protocol implementations MUST follow the next algo-
rithm:

1. Let secret := Get secret from Tunnel.

2. Let nonce := Get nonce from Tunnel.

3. Let data := Input.

4. Let result := AEAD_ChaCha20_Poly1305_IETF_Encrypt(data, secret, nonce).

5. Set nonce in Tunnel := nonce + 2.

6. Output := result.

When symmetric decryption of a chunk is requested, Metarhia Protocol implementations MUST follow the next algo-
rithm:

1. Let secret := Get secret from Tunnel.

2. Let data := Input.

3. Let result := AEAD_ChaCha20_Poly1305_IETF_Decrypt(data, secret).

4. Output := result.

10 Chapter 1. Protocol Specification

https://tools.ietf.org/html/rfc7539

	Protocol Specification
	Introduction
	Terms
	Transport Support
	Connection States
	Chunk Types
	Chunk Formats
	“Fast” UDP Events Encryption (ignore this for now)

